If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-25n^2+90n=0
a = -25; b = 90; c = 0;
Δ = b2-4ac
Δ = 902-4·(-25)·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90}{2*-25}=\frac{-180}{-50} =3+3/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90}{2*-25}=\frac{0}{-50} =0 $
| x-10=2x-65 | | 19x-34=46-x | | 5x-94=4x-50 | | 5x-12=x+32 | | 7(8n+1)=-329 | | x2+20x+224=0 | | -240=6k+8(1+7k) | | z=-4+4 | | 5x-63=7x-95 | | 6x-16=5x+24 | | p+48=-2p+84 | | 29.75+0.15m=19.95+0.29 | | -3x=x6=2x | | 29.75=0.15m=19.95+0.29 | | 4.7g+9=2.7g+19 | | 1.31(j+2)+1.4=7.95 | | 0.8(x+4-0.3x=1.7 | | 2(b+9)+3=5 | | 13=x/2-16 | | -(s+6)+5=7 | | 130=2x-70 | | 111=14t | | 3.5=-9.3+8y | | 2+x=5+1x | | Y=3-9x | | 1x+0x=7 | | 3(n+3)=4n+40 | | 13w-20=19 | | y-5.3=14/2 | | -17r+6r+16r+17r+19r=12 | | (6)=12(x+3) | | y-5=4(y-2) |